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Abstract

Proper normalization of a Maxwell–Boltzmann electron distribution in transient plasma models requires the self-con-
sistent calculation of a reference density from a global electron conservation equation. This calculation tends to produce
numerical oscillations in the time evolution of the plasma, in particular during the formation of the plasma sheath. The
present paper proposes a simple numerical scheme to prevent these oscillations by artificial critical damping, which makes
it possible to simulate transient plasma phenomena without electron-related time step conditions.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction and problem definition

A ubiquitous approximation in elementary plasma theory is to assume a Maxwell–Boltzmann equilibrium-
distribution of electrons:
0021-9
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neðxÞ ¼ n0 expðUðxÞ=T eÞ; ð1Þ

where x are the space coordinates, ne is the electron number density, U is the electric potential, Te is the elec-
tron temperature in eV which is constant and given, and n0 is a reference density corresponding to U = 0. This
approximation is used in particular to study phenomena where the electron collision length is large compared
to the length scale of interest, such as the space charge sheath on the plasma edge, and is at the basis of plasma
sheath theory, probe theory, the Bohm criterion, etc. Eq. (1) is then usually coupled to an ion transport equa-
tion and Poisson’s equation to obtain the potential in a self-consistent manner.

Elementary theory can be generalized to multidimensional or transient problems by numerical models. The
literature reports numerical models for ion extraction through metal grids [1], ion implantation sheaths [2,3],
991/$ - see front matter � 2007 Elsevier Inc. All rights reserved.
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vacuum circuit breakers [4], electro-negative plasma sheaths [5,6], etc., all based on the electron Boltzmann
relation shown in Eq. (1). Most of these models are transient in the sense that they describe time evolution
on the time scale of the ion transport. The numerical time advancement scheme of these models is as follows.
Consider that all quantities are known at time tk and are to be calculated at time tk+1 = tk + Dt. First, the new
ion density nkþ1

i is calculated from an ion transport equation or an ion particle simulation using the electric
potential Uk. Subsequently the new potential Uk+1 is solved from Poisson’s equation
e0r2Ukþ1 ¼ en0 expðUkþ1=T eÞ � enkþ1
i

� en0 expðUk=T eÞð1þ ðUkþ1 � UkÞ=T eÞ � enkþ1
i ;

ð2Þ
where Eq. (1) has been substituted for the electron density, e is the elementary charge, and e0 is the permittivity
of free space. The potential in the Boltzmann factor on the right hand side of Eq. (2) must be implicit to avoid
severe time step conditions of the type xpeDt < 0.2, where xpe = (e2ne/e0me)

1/2 is the electron plasma fre-
quency. [2] In order to solve Eq. (2) it is usually linearized by a Newton–Raphson iteration as shown in
the third member.

The problem with the above model scheme is that the electron reference density n0 is not known a priori but
has to be calculated self-consistently from electron conservation [7] and that this calculation leads to numerical
difficulties. The global electron conservation equation is
o

ot

ZZZ
volume

nedV þ
ZZ

surface

1

4
venedA ¼

ZZZ
volume

S dV ; ð3Þ
where ve = (8eTe/pme)
1/2 is the Maxwellian thermal speed and S is the source term, accounting for bulk ion-

isation, recombination, and attachment. Substituting Eq. (1) into Eq. (3), we find the following equation for n0
oðn0pÞ
ot
þ 1

4
ven0q ¼ r; ð4Þ
where
p ¼
ZZZ

volume

expðU=T eÞdV ð5Þ

q ¼
ZZ

surface

expðU=T eÞdA ð6Þ

r ¼
ZZZ

volume

SdV : ð7Þ
Alternatively one can obtain n0 from a global current conservation equation or work with a reference potential
U0 = �Teln(n0) rather than n0 but this eventually comes all down to the same. In stationary problems Eq. (4)
reduces to n0 = 4r/qve which is readily evaluated especially if the total volume source term S is a fixed model
parameter. In transient problems, however, n0 changes in time and is directly related to the potential every-
where in space through the integral p shown in Eq. (5). Discretizing the time derivative in Eq. (4), we obtain
nkþ1
0 ¼ nk

0

pk

pkþ1
� n0

veqDt
4pkþ1

þ rDt
pkþ1

: ð8Þ
The last two terms on the right account for electron loss and production and determine the steady state value
of n0. The first term compensates for changes in the plasma potential and is important (often dominant) during
transient phenomena. Because pk+1 is to be calculated from Uk+1, the value of nkþ1

0 from Eq. (8) is not available
when solving Poisson’s Eq. (2) at time tk+1 and it is necessary to approximate Eq. (8). Extrapolating from pre-
vious time steps, we try
nkþ1
0 ¼ nk

0

pk�1

pk
� nk

0

veqkDt
4pk

þ rkDt
pk

: ð9Þ
Unfortunately, it turns out that this causes strong oscillations in the time evolution of the plasma during rapid
transient phenomena, in particular during the formation of the plasma sheath, unless the time step Dt is very
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Fig. 1. Time evolution of the plasma potential (log scale) during the formation of the plasma sheath (see text), obtained using Eq. (9)
(oscillating curves) and Eq. (19) (monotonous curves) for different numerical time steps.
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small. An example is shown in Fig. 1. On closer inspection, it appears that this is a fundamental problem, re-
lated to the global nature of the Boltzmann relation, which cannot be solved by rewriting the equations in
terms of current conservation or reference potential. This problem strongly complicates and limits the use
of the Boltzmann relation in transient plasma models. Most of the models cited above circumvent the problem
by additional assumptions on n0, i.e. they do not calculate n0 self-consistently at risk of physical errors and
artefacts.

The present paper proposes a simple scheme to prevent numerical oscillations due to the calculation of n0

by a slight modification of Eq. (9) such as to obtain critical oscillation damping. This makes it possible to cal-
culate n0 self-consistently in transient plasma models without additional time step conditions. In the following
sections, we analyse the origin of the oscillations, describe and explain our scheme, and show simulation
results demonstrating its efficacy.

2. Analysis

To see why Eq. (9) causes numerical oscillations and to find out what we can do about it, we need to under-
stand how the electric potential reacts to changes in n0. Due to the implicit updating of the Boltzmann factor
exp(U/Te) in Poisson’s equation, the potential tends to compensate for any change in n0 such as to keep the
electron density constant in most of the plasma volume, i.e. the product n0p is kept approximately constant.
Let us investigate this behaviour more in detail.

Subtracting Poisson’s Eq. (2) at two subsequent time iterations and integrating over the plasma volume, we
obtain
� e0

e

ZZ
surface

DE?dA ¼ n0Dp þ pDn0 � DN i; ð10Þ
where D symbolizes the change between the iterations, E^ is the electric field towards the wall, and Ni is the
total number of ions in the volume. We now wish to estimate the left-hand side of this equation. We know
from plasma physics that the potential is relatively constant in the bulk of the plasma and then suddenly drops
to the wall potential within a narrow sheath region in front of the wall. The average potential drop across the
sheath is approximately Teln(p/V) � Teln(q/A) = Teln(p/qK), where V is the total plasma volume, A is the to-
tal wall surface, and K = V/A is the effective plasma radius. The ion density in the sheath is of the order of the
average plasma density n0p/V. Integrating Poisson’s equation across the sheath, we find for the electric field at
the wall
E? �
T e

kD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnðp=qKÞ

p
; ð11Þ
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where kD = (e0TeV/en0p)1/2 is the average Debye length. The left-hand side of Eq. (10) becomes
� e0

e

ZZ
surface

DE?dA � �an0Dp ð12Þ
where a = (kD/K)(2ln(p/qK))�1/2 is a small parameter of the order of the ratio of the Debye length to the plas-
ma radius. Substituting this expression into Eq. (10) and neglecting the ion density term, we find the following
estimate for the change Dp due to a change Dn0
Dp
p
� �ð1� aÞDn0

n0

: ð13Þ
Let us now use this result to analyse the behaviour of n0 from Eq. (9). Applied to the time step from k � 1 to k,
Eq. (13) yields
pk�1

pk
� 2� a� ð1� aÞ n

k�1
0

nk
0

: ð14Þ
Substituting this into Eq. (9), we find
nkþ1
0 ¼ ð2� aÞnk

0 � ð1� aÞnk�1
0 � nk

0

veqkDt
4pk

þ rkDt
pk

; ð15Þ
which can be identified with the finite difference discretization of
Dt2 d2n0

dt2
þ aDt

dn0

dt
þ veqDt

4p
n0 ¼

rDt
p
: ð16Þ
Most coefficients in this equation are more or less constant, except for p which is inversely proportional to n0

to first order. However, substituting p � 1/n0 and linearizing around the steady state solution n0 = 4r/qve, we
recover exactly the same equation. Eq. (16) can therefore be considered as a linear differential equation with
constant coefficients. Posing n0(t) = a exp(Xt) + b, we find the solution
X ¼ �1

2Dt
ða�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � veqDt=p

p
Þ: ð17Þ
Oscillations can appear in case the square root is imaginary and are damped only weakly on a time scale 2Dt/a.
To avoid oscillations, it is necessary to restrict the time step to
Dt <
a2p
veq

: ð18Þ
This condition is generally much more severe than other time step conditions related to ion transport and
accuracy, and is, therefore, very limiting for the overall simulation speed. Note that due to the crude approx-
imations of our analysis, Eq. (18) is no more than an order-of-magnitude estimate and should not be taken too
literally.

3. Proposed numerical scheme

Based on the above analysis, we propose to modify Eq. (9) as follows
nkþ1
0 ¼ nk

0 ð1� f Þ p
k�1

pk
þ f

� �
� nk

0

veqkDt
4pk

þ rkDt
pk

; ð19Þ
where f is a small parameter and the change in p is slightly under-relaxed by a factor (1 � f). Upon substitution
of Eq. (14), the parameter f adds directly to a, and therefore, relieves the time step condition (18). Rather than
restricting the time step, we propose to adjust f such as to obtain critical damping, i.e. to make the square root
in Eq. (17) vanish
f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
veqDt=p

p
� a �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
veqDt=p

p
; ð20Þ
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where we prefer to altogether neglect the negative contribution from a in view of the crude approximations
necessary to estimate this parameter. (Note that the purpose of Eq. (19) is to be able to use large time steps
for which a is negligibly small.) With these modifications the time advancement scheme becomes:

(1) calculate the ion density nkþ1
i using Uk;

(2) calculate the reference density nkþ1
0 from Eq. (19) using f = (veq

kDt/pk)1/2;
(3) solve the potential Uk+1 from Eq. (2) using nkþ1

i and nkþ1
0 ;

(4) calculate the coefficients pk+1, qk+1 and rk+1 from Eqs. (5)–(7) using Uk+1.

This scheme leads to smooth simulation results for any time step small enough to resolve the ion transport.
However, the under-relaxation of Dp in Eq. (19) is not justified by physical reasons and can be expected to
cause physical errors in the time evolution, and increasingly so as Dt and hence f are larger. From Eq. (17),
we expect evolution errors on a time scale 2Dt/f = 2(pDt/veq)1/2. Time step restrictions could be necessary
to ensure accuracy.

4. Test results

We tested the above numerical scheme for a one-dimensional model and the following conditions: uniform
numerical grid of 200 cells, domain size d = 0.01 m, electron temperature Te = 1 eV, fixed potential at the
boundaries U(0) = U(d) = 0 V. Two test cases were investigated: (1) formation of the plasma sheath; and
(2) plasma decay.

In the first test case, we fixed a uniform ion density of 1016 m�3 and a uniform ionisation source term of
1022 m�3 s�1. Ion transport was not simulated. As an initial condition, we set the electron density equal to
the ion density, i.e. U(x) = 0 V and n0 = 1016 m�3, and simulated the relaxation to steady state, i.e. the forma-
tion of the plasma sheath. We tested both Eqs. (9) and (8) for different time steps. Fig. 1 shows the time evo-
lution of the potential in the centre of the plasma U(d/2). In agreement with the above analysis, Eq. (9) causes
numerical oscillations which are slowly damped on a time scale proportional to Dt. Using Eq. (19) the oscil-
lations are completely damped out but the relaxation to steady state is slowed down for larger time steps. To
assess whether this slow-down is acceptable and determine an appropriate time step, one should realize that it
is not physically meaningful to resolve the time evolution of the problem on the electron transport time scale
4d/ve (�0.1 ls) since the electron Maxwell–Boltzmann distribution is valid only for much longer time scales.
The important thing is to properly describe the ion transport time scale. This was investigated in our second
test.

In the second test, case we used a particle description of the ions as in [3–7], where we set the ion mass equal
to 6.64 · 10�26 kg (argon), and we turned off the ionisation source term. As an initial condition, we distributed
0.2 ns 
1 ns 

0.2 ns 
1 ns 

5 ns

5 ns

0.2 ns

1 ns

5 ns

4.0

4.5

5.0

5.5

6.0

pl
as

m
a 

po
te

nt
ia

l (
V)

0 10 15 20

5 ns

0.2 ns

1 ns

10-4

10-3

10-2

10-1

100

re
fe

re
nc

e 
de

ns
ity

 (1
016

 m
-3

)

time (μs)
50 10 15 20

time (μs)
5

Fig. 2. Time evolution of the plasma potential and the reference density n0 during the decay of a plasma in the absence of ionisation (see
text), obtained using Eq. (19) for different numerical time steps.
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105 macro-ions of weight 109 m�2 uniformly over the domain at a Maxwellian temperature of 300 K and set
the electron density equal to the ion density of 1016 m�3. We then simulated the formation of the plasma
sheath (as in the previous test) and the decay of the plasma using Eq. (19) for different time steps. Fig. 2 shows
again the time evolution of the potential in the centre of the plasma and also that of n0. Note that the ion
simulation imposes a maximum time step of the order of 5 ns due to the CFL condition. Simulation results
are very similar for any of the time steps, although a slight delay can be observed for Dt = 5 ns. These results
confirm that our scheme is appropriate to simulate the overall plasma evolution.

5. Concluding remarks

Proper normalization of the Maxwell–Boltzmann electron distribution in transient plasma models requires
the self-consistent calculation of the reference density n0 from global electron conservation. This calculation
tends to produce numerical oscillations in the time evolution of the plasma, in particular during the formation
of the plasma sheath. We propose a simple numerical scheme to prevent these oscillations by slight under-
relaxation of the plasma potential such as to obtain critical damping. The numerical errors due to the
under-relaxation appear to have no significant effect on the time evolution of the plasma on the ion transport
time scale, although some slight delay can be observed for larger time steps. We conclude that our scheme is
appropriate to simulate transient plasma phenomena without electron-related time step conditions.

A final remark concerns the definition of the electric potential. Contrary to Maxwell’s equations, the Boltz-
mann relation involves the absolute value of the potential and therefore depends on the definition of the
potential reference. For example, simultaneously changing all electrode potentials by the same amount (i.e.
changing the potential reference) requires readjustment of the reference density n0, which is taken care of
by our numerical scheme, but not instantaneously, and causes errors depending the time step. This issue
can become problematic in case a time-dependent voltage is applied across the plasma. Additional time step
restriction can then be necessary to limit errors. We recommend to define the potential with respect to the
anode (i.e. keep U = 0 at the anode) and change only the cathode potential: since the plasma potential follows
the anode rather than the cathode this leads to easier readjustment of n0 and smaller errors. In any case we
recommend to test several time steps and check that they yield the same results.
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